Hydrodynamic modeling of avalanche breakdown in a gate overvoltage protection structure

نویسندگان

  • Martin Knaipp
  • Werner Kanert
  • Siegfried Selberherr
چکیده

The breakdown of an overvoltage protection structure is analyzed in the temperature range from 298 to 523 K. The avalanche generation rates are modeled as a function of the carrier and lattice temperature. The generation rates are proportional to the carrier concentration. Careful attention is given to the pre-breakdown regime and to the breakdown process. The importance of various generation processes to the impact process is studied as well as the in ̄uence on variations of the ionization threshold energy and of the energy loss during the impact process. It is shown that the carrier generation inside the junction causes adiabatic carrier cooling, which leads to di€erent carrier heating e€ects at low and high lattice temperature. The behavior of carrier heating at room temperature is strongly a€ected by the asymmetric ®eld distribution inside the junction. The reason for this is the ®eld dependence of the used trap assisted band to band tunneling model and of the direct band to band tunneling model. It is shown that at room temperature, the onset of hole impact ionization plays an important role for the electron heating. This is di€erent at a temperature of 523 K, where the electrons dominate the onset of impact ionization. Ó 2000 Elsevier Science Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Solution for Gate Induced Vibration Due to Under Flow Cavitation

Among the many force s to which hydraulic structures are exposed to, the forces induced by cavitation incident are of typical hydrodynamic unknown forces. The aim of this study is to define these forces as coupled fluid-structure interaction under two dynamic effects. The first dynamic effect which incorporates facilities for dealing with cavitation fluid is based on the appearance and bursting...

متن کامل

Complete single-photon counting and timing module in a microchip.

A complete module for single-photon counting and timing is demonstrated in a single chip. Features comparable with or better than commercially available macroscopic modules are obtained by integration of an active-quenching and active-reset circuit in complementary metal-oxide semiconductor technology together with a single-photon avalanche diode (SPAD). The integrated SPAD has a 12-microm-diam...

متن کامل

Band bending engineering in p-i-n gate all around Carbon nanotube field effect transistors by multi-segment gate

The p-i-n carbon nanotube (CNT) devices suffer from low ON/OFF current ratio and small saturation current. In this paper by band bending engineering, we improved the device performance of p-i-n CNT field effect transistors (CNTFET). A triple gate all around structure is proposed to manage the carrier transport along the channel. We called this structure multi-segment gate (MSG) CNTFET. Band to ...

متن کامل

Monte Carlo Simulation of Multiplication Factor in PIN In0.52Al0.48As Avalanche Photodiodes

In this paper, we calculate electron and hole impactionization coefficients in In0.52Al0.48As using a Monte Carlo modelwhich has two valleys and two bands for electrons and holesrespectively. Also, we calculate multiplication factor for electronand hole initiated multiplication regimes and breakdown voltagein In0.52Al0.48As PIN avalanche photodiodes. To validate themodel, we compare our simulat...

متن کامل

Band bending engineering in p-i-n gate all around Carbon nanotube field effect transistors by multi-segment gate

The p-i-n carbon nanotube (CNT) devices suffer from low ON/OFF current ratio and small saturation current. In this paper by band bending engineering, we improved the device performance of p-i-n CNT field effect transistors (CNTFET). A triple gate all around structure is proposed to manage the carrier transport along the channel. We called this structure multi-segment gate (MSG) CNTFET. Band to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000